Elevated glucose inhibits VEGF-A–mediated endocardial cushion formation: modulation by PECAM-1 and MMP-2

نویسندگان

  • Josephine M. Enciso
  • Sandra Canosa
  • Emese Pinter
  • Joseph A. Madri
چکیده

trioventricular (AV) septal defects resulting from aberrant endocardial cushion (EC) formation are observed at increased rates in infants of diabetic mothers. EC formation occurs via an epithelial-mesenchymal transformation (EMT), involving transformation of endocardial cells into mesenchymal cells, migration, and invasion into extracellular matrix. Here, we report that elevated glucose inhibits EMT by reducing myocardial vascular endothelial growth factor A (VEGF-A). This effect is reversed with exogenous recombinant mouse VEGF-A 165 , whereas addition of soluble VEGF receptor-1 blocks EMT. We show that disruption of EMT is associated with persistence of platelet endothelial cell adhesion molecule-1 (PECAM-1) and decreased matrix metalloproteinase-2 (MMP-2) expression. A These findings correlate with retention of a nontransformed endocardial sheet and lack of invasion. The MMP inhibitor GM6001 blocks invasion, whereas explants from PECAM-1 deficient mice exhibit MMP-2 induction and normal EMT in high glucose. PECAM-1–negative endothelial cells are highly motile and express more MMP-2 than do PECAM-1– positive endothelial cells. During EMT, loss of PECAM-1 similarly promotes single cell motility and MMP-2 expression. Our findings suggest that high glucose-induced inhibition of AV cushion morphogenesis results from decreased myocardial VEGF-A expression and is, in part, mediated by persistent endocardial cell PECAM-1 expression and failure to up-regulate MMP-2 expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated glucose inhibits VEGF-A–mediated endocardial cushion formation

Atrioventricular (AV) septal defects resulting from aberrant endocardial cushion (EC) formation are observed at increased rates in infants of diabetic mothers. EC formation occurs via an epithelial-mesenchymal transformation (EMT), involving transformation of endocardial cells into mesenchymal cells, migration, and invasion into extracellular matrix. Here, we report that elevated glucose inhibi...

متن کامل

Protective actions of globular and full-length adiponectin on human endothelial cells: novel insights into adiponectin-induced angiogenesis.

BACKGROUND/AIMS Adiponectin levels are decreased in diabetes and atherosclerosis. Coexisting hyperglycaemia and systemic inflammation predisposes to dysregulated angiogenesis and vascular disease. We investigated the effect of globular adiponectin (gAd) and full-length adiponectin (fAd) on angiogenesis and pro-angiogenic molecules, i.e. matrix metalloproteinase (MMP)-2, MMP-9 and vascular endot...

متن کامل

Novel role of lactosylceramide in vascular endothelial growth factor-mediated angiogenesis in human endothelial cells.

Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis associated with coronary heart disease, vascular complications in diabetes, inflammatory vascular diseases, and tumor metastasis. The mechanism of VEGF-driven angiogenesis involving glycosphingolipids such as lactosylceramide (LacCer), however, is not known. To demonstrate the involvement of LacCer in VEGF-induced ang...

متن کامل

Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.

Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key ...

متن کامل

MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production.

RATIONALE Since their discovery almost 20 years ago, microRNAs have been shown to perform essential roles during tissue development and disease. Although roles for microRNAs in the myocardium during embryo development and cardiac disease have been demonstrated, very little is know about their role in the endocardium or during cardiac valve formation. OBJECTIVE To study the role of microRNAs i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003